
1

Code Generation Part I

Chapter 9

2

Position of a Code Generator in

the Compiler Model

Front-End
Code

Optimizer

Source

program

Symbol Table

Lexical error

Syntax error

Semantic error

Intermediate

code Code

Generator

Intermediate

code

Target

program

3

Code Generation

• Code produced by compiler must be correct

– Source to target program transformation is
semantics preserving

• Code produced by compiler should be of
high quality

– Effective use of target machine resources

– Heuristic techniques can generate good but
suboptimal code, because generating optimal
code is undecidable

4

Target Program Code

• The back-end code generator of a compiler

may generate different forms of code,

depending on the requirements:

– Absolute machine code (executable code)

– Relocatable machine code (object files for

linker)

– Assembly language (facilitates debugging)

– Byte code forms for interpreters (e.g. JVM)

5

The Target Machine

• Implementing code generation requires thorough

understanding of the target machine architecture

and its instruction set

• Our (hypothetical) machine:

– Byte-addressable (word = 4 bytes)

– Has n general purpose registers R0, R1, …, Rn-1

– Two-address instructions of the form

op source, destination

6

The Target Machine: Op-codes

and Address Modes
• Op-codes (op), for example

MOV (move content of source to destination)
ADD (add content of source to destination)
SUB (subtract content of source from dest.)

• Address modes
Mode Form Address Added Cost

Absolute M M 1

Register R R 0

Indexed c(R) c+contents(R) 1

Indirect register *R contents(R) 0

Indirect indexed *c(R) contents(c+contents(R)) 1

Literal #c N/A 1

7

Instruction Costs

• Machine is a simple, non-super-scalar processor

with fixed instruction costs

• Realistic machines have deep pipelines, I-cache,

D-cache, etc.

• Define the cost of instruction

= 1 + cost(source-mode) + cost(destination-mode)

8

Instruction Operation Cost

MOV R0,R1 Store content(R0) into register R1 1

MOV R0,M Store content(R0) into memory location M 2

MOV M,R0 Store content(M) into register R0 2

MOV 4(R0),M Store contents(4+contents(R0)) into M 3

MOV *4(R0),M Store contents(contents(4+contents(R0))) into M 3

MOV #1,R0 Store 1 into R0 2

ADD 4(R0),*12(R1) Add contents(4+contents(R0))

to contents(12+contents(R1)) 3

Examples

9

Instruction Selection

• Instruction selection is important to obtain
efficient code

• Suppose we translate three-address code
x:=y+z

to: MOV y,R0
ADD z,R0
MOV R0,x

a:=a+1 MOV a,R0

ADD #1,R0

MOV R0,a

ADD #1,a INC a

Cost = 6

Cost = 3 Cost = 2

Better Better

10

Instruction Selection: Utilizing

Addressing Modes
• Suppose we translate a:=b+c into

MOV b,R0

ADD c,R0

MOV R0,a

• Assuming addresses of a, b, and c are stored in
R0, R1, and R2

MOV *R1,*R0

ADD *R2,*R0

• Assuming R1 and R2 contain values of b and c
ADD R2,R1

MOV R1,a

11

Need for Global Machine-

Specific Code Optimizations
• Suppose we translate three-address code

x:=y+z

to: MOV y,R0
ADD z,R0
MOV R0,x

• Then, we translate
a:=b+c

d:=a+e

to: MOV a,R0

ADD b,R0

MOV R0,a

MOV a,R0

ADD e,R0

MOV R0,d

Redundant

12

Register Allocation and

Assignment

• Efficient utilization of the limited set of registers

is important to generate good code

• Registers are assigned by

– Register allocation to select the set of variables that will

reside in registers at a point in the code

– Register assignment to pick the specific register that a

variable will reside in

• Finding an optimal register assignment in general

is NP-complete

13

Example

t:=a+b

t:=t*c

t:=t/d

MOV a,R1

ADD b,R1

MUL c,R1

DIV d,R1

MOV R1,t

t:=a*b

t:=t+a

t:=t/d

MOV a,R0

MOV R0,R1

MUL b,R1

ADD R0,R1

DIV d,R1

MOV R1,t

{ R1=t } { R0=a, R1=t }

14

Choice of Evaluation Order

• When instructions are independent, their
evaluation order can be changed

t1:=a+b

t2:=c+d

t3:=e*t2

t4:=t1-t3

a+b-(c+d)*e

MOV a,R0

ADD b,R0

MOV R0,t1

MOV c,R1

ADD d,R1

MOV e,R0

MUL R1,R0

MOV t1,R1

SUB R0,R1

MOV R1,t4

t2:=c+d

t3:=e*t2

t1:=a+b

t4:=t1-t3

MOV c,R0

ADD d,R0

MOV e,R1

MUL R0,R1

MOV a,R0

ADD b,R0

SUB R1,R0

MOV R0,t4

reorder

15

Generating Code for Stack

Allocation of Activation Records
t1 := a + b

param t1

param c

t2 := call foo,2

…

func foo

…

return t1

100: ADD #16,SP

108: MOV a,R0

116: ADD b,R0

124: MOV R0,4(SP)

132: MOV c,8(SP)

140: MOV #156,*SP

148: GOTO 500

156: MOV 12(SP),R0

164: SUB #16,SP

172: …

500: …

564: MOV R0,12(SP)

572: GOTO *SP Return to caller

Store return value

Push frame

Store a+b

Store c

Store return address

Jump to foo

Get return value

Remove frame

Note: Language and machine dependent

Here we assume C-like implementation with SP and no FP

